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This article considers certain two-dimensional, irrotational, steady flows in fluid 
regions of finite depth and infinite horizontal extent. Geometrical information about 
these flows and their singularities is obtained, using a variant of a classical 
comparison principle. The results are applied to three types of problems: (i) 
supercritical solitary waves carrying planing surfaces or surfboards, (ii) supercritical 
flows past ship hulls and (iii) supercritical interfacial solitary waves in systems 
consisting of two immiscible fluids. 

1. Introduction 
A classical mathematical technique in the study of steady irrotational fluid motion 

is the use of comparison flows (e.g. Gilbarg 1960). In this article we report on a 
variant of the method for two-dimensional flows, with several new applications to 
free-surface flows with gravity. By choice of the proper comparison flows, geometrical 
information about the fluid region is obtained. The main results are for supercritical 
flows in fluid regions of finite depth and infinite horizontal extent. It is in this regime 
that solitary waves are observed. The applications presented here are to three types 
of problems: (i) free-surface flows past ship hulls in channels of finite depth, (ii) 
surfboards or other planing surfaces in solitary-wave-like flows, and (iii) waves in an 
interface between immiscible fluids in a system of two fluids with differing densities. 
Comparison flows are most easily obtained from considering the fluid equations and 
boundary conditions in complex velocity potential coordinates. Later in the 
introduction our comparison principle will be stated. However, as the details of these 
three problems differ, the particular descriptions of the applications of the method 
are left to the sections below. 

The use of comparison flows in the study of free boundary problems is well known. 
A common reference is Gilbarg (1960), with applications by many authors including 
Lewy (1952), Serrin (1954), Keady & Pritchard (1974) and Caffarelli (1986). In the 
theory of steady flows with gravity, comparison principles were applied to the 
classical solitary wave (Craig & Sternberg 1988), with the conclusion that all solitary 
waves in the free surface of a fluid in a channel of fixed depth and infinite horizontal 
extent are positively elevated above the asymptotic fluid level, symmetric about a 
unique crest, and monotone on either side of the crest. This article presents certain 
extensions of the method to the three problems mentioned above. In all cases, our 
approach applies to the situation where the solitary wave can be represented globally 
as the graph of a function. 

Two of the results are worthy of particular note. The first is that, for certain profile 
geometries of ship hull, there are no supercritical steady flows which do not have 
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splash, spray or other singularities in the free surface. Since this has bearing on the 
resistance of these objects to motion, there may be design consequences for such 
profiles when supercritical velocities are expected. 

The second result concerns solitary waves in systems of two immiscible fluids of 
different densities p1 and p,. It is well-known (e.g. Benjamin 1966) that there is an 
analogue of the critical Froude number, dependent on the channel depth, the 
asymptotic relative depths h,, h, of the two fluids at  infinity, and the ratio of their 
densities, p1/p2. Furthermore, in small-amplitude theory (Benjamin) it is known that 
supercritical solitary waves are elevated (reap. depressed) with respect to the 
asymptotic level, depending upon the inequality p,/h: < p,/hi (reap. p,/ht > p, /hi) .  
We show that this result holds for supercritical waves of any amplitude. Additionally, 
in the case when the ratios are equal, we show that there can be no supercritical 
solitary waves. Thus whenever p,/h: = p, /hi ,  solutions which have solitary-wave- 
like profiles must either not be steady flows, or travel at subcritical speeds, a t  which 
they are unstable to radiating a wake at infinity. 

We have obtained more detailed mathematical results for the three problems 
mentioned above ; these will appear in a subsequent publication (Craig & Sternberg 
1991). The results relate primarily to the monotonicity and symmetry of free-surface 
profiles, and their asymptotic behaviour a t  infinity. 

The variant of the classical comparison principle that we use in this article is based 
on the complex velocity potential. Any incompressible flow with no vorticity has a 
velocity potential that is harmonic, 

A @  = 0. (1) 

In two-dimensional flows this is joined with its harmonic conjugate function Y to 
make the complex velocity potential. The inverse of this analytic function is again 
analytic, a conformal mapping of a certain domain S in the complex velocity 
potential plane to the physical fluid domain, 

Z(@+ily) = (X+iY)(@+i!P). (2) 

Of course, both X and Yare harmonic functions of (a, ly). Since the complex velocity 
potential is defined only up to a constant, the corresponding domain determines the 
same flow under any translation. Consider two steady flows, and suppose that, 
possibly after an initial translation, the corresponding domains coincide, S ,  = S,. 
The comparison principle concerns the values of (X,, 5) and (X,, 5) in S,. Since non- 
constant harmonic functions cannot have interior maxima or minima (e.g. Protter & 
Weinberger 1967), the first statement is that if q < yZ throughout S,, then 

Y,<5 (3) 

everywhere interior to S,, or else the flows coincide, and there is a real constant R 
such that 2, = 2, + R. Actually, it suffices to demand that q < only at boundary 
points of S, in order to draw this first conclusion. A similar statement can be made 
for X. 

The second comparison result concerns the boundary behaviour of the conformal 
mapping. Assume that 

at all boundary points of S,, and that a t  a particular boundary point (Go, Yo) 
equality holds : 

( 5 )  

q<yZ (4) 

5(@0, Yo) = y z ( @ o ,  Yo). 
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Then the tangential derivatives coincide, 

aT(%-T) (@O, = 0, (6) 

and additionally, either the exterior normal derivatives satisfy 

a N ( Y , - Y , )  (Go, vl,) < 0, (7) 

or else again the flows coincide, 2, = Z2+R.  This is known as the Hopf boundary 
point lemma for harmonic functions (e.g. Protter & Weinberger 1967). In  the 
applications below, the complex velocity potential domain is a strip 

{@+iY: -a < @ < a, -ch < Y < 0}, 

where c is the wave speed and h measures asymptotic depth of the fluid. The free 
surface corresponds to the top Y = 0, and the tangential and normal derivatives of 
Y are respectively 3, Y and a,Y. 

This comparison result is somewhat stronger than Gilbarg’s result (1960, Theorem 
1, section 27) in the two-dimensional case. To compare them, note that i fu  and v are 
the horizontal and vertical components of velocity, then one readily calculates that 

V U 
3,Y=- a N Y = -  

u2+v2’ u2 + v2 

Restating (6) and (7) again under the hypotheses (4) and (5 ) ,  we fmd that at the point 
(@j0 ,  Yo) we have 

and (9) 

which implies that uf + v: < ui +v;, or else the flows are equivalent. This is Gilbarg’s 
comparison of flow speeds, for if the physical boundaries of the two flows coincide at 
(Go, Yo),, the maximum modulus principle implies that the second fluid region 
contains the first. Using (6) again, we fmd that lvl) < lv21, a new statement comparing 
vertical velocities of the two fluids. It is conditions (6) and (7) that we use in the 
subsequent discussion. 

2. Free-surface problems with objects in the surface 
We consider first an impermeable solid object such as a ship hull or planing surface 

of given shape which is taken to lie upon the top surface of a steady two-dimensional 
flow. This leads to a boundary-value problem of mixed type. We assume that the flow 
has no spray or splash and that the top surface is representable as the graph of a 
function, so that the fluid region is described as ((2, y) : - a < z < + a, - h < y < 
T(z)}. For related numerical studies of such problems we refer to Keller & Vanden- 
Broeck (1989) and Vanden-Broeck (1987). The surface of the fluid region consists of 
two subregions : one is in contact with the solid object, while in the other region the 
surface is free and so must satisfy the Bernoulli condition stating the continuity of 
pressure. The upper fluid boundary (z, T(x)) and the velocity potential @(x, y) which 
describe this steady flow satisfy : 
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(10) 

3, Q, = 0 for all ( x ,  f(x)) on the upper fluid boundary, 

T(x )  is prescribed by the solid object on the fixed portion 

of the upper fluid boundary, 

upper fluid boundary, 

+(VQ,), +gT = !jcz for (x ,  T(x)) on the free boundary of the 

AQ,=O for - 0 0 < x < < + , - h < y < T ( x ) ,  

a ,Q,=O for y=-h .  

We address the problem of flows which approach uniform flow at infinity, so that 
we take as asymptotic conditions 

as x+ & 00. This implies by (10) that the free-surface elevation T(x) -+ 0 as x -+ f 00. 

Furthermore, we may apply the Hopf boundary point lemma (cf. (7)) to conclude 
that on the top surface, 

Similarly, 

a, ~ ( x ,  r ( Z ) )  > 0. 

a, Y ( x ,  - h) > 0. 

Since, the asymptotic conditions imply that a, Y > 0 as 1x1 +f 00,  the first 
comparison principle, (cf. (3)), yields the inequality 

a , n - o  (12) 

throughout the fluid region. In particular, note that (12) precludes the possibility 
that a streamline develops a vertical slope. 

The boundary-value problem (lo), (1 1) is equivalent to a nonlinear problem for the 
conformal mapping of a fixed strip into the fluid region. This is the complex velocity 
potential plane; the fluid equations are transformed so that the independent 
variables are the velocity potential Q, and the stream function Y. 

We find it more convenient here to introduce variables (c5, cq)  = (@, !P) in the strip 

S = { ( [ ,7) : -00 < E <  +a, -h < 7 < O } .  

The conformal map is Z(& q )  = (X+ iY) (6,  q), taking the strip S to the fluid domain. 
By the asymptotic conditions (l l) ,  we have (X, Y) + ( & q )  as I f 1  + ,m. Let 

X(597) = 5+.(5,17), Y(5,q) = r+y(5,?1), 

where (x+iy)(&q) is the perturbation of the conformal map from the one for a 
uniform flow. Under this transformation, the top boundary a = {(5,0), - 00 < 6 < 
a} of S is transformed into the upper fluid boundary of the fluid region, and thus a 
is divided into two sets. One is the set which is transformed by 2 onto the free 
surface; we denote it by a,. The remaining region a, is the set which is transformed 
to the boundary of the contact between the fluid and the object in the surface. The 
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FIGURE 1. Object in top surface above mean level. 

set a, is taken to be closed, and a, to be bounded. In  these coordinates, the problem 
is most conveniently posed for the function y(& 7) in the region 8: 

29 +- - 1 for 7 = 0, t ~ a , ,  the free surface, 
1 

(agy)2+(1+a,y)z c2y-  

(131 

(14) 

The transformation to the complex velocity potential plane, and the equivalence 
of (lo), (11) to (13), (14) can be established if one assumes that the solution to (lo), 
(1 1) has continuous derivatives. We shall make this assumption, which precludes the 
possibility that streamlines terminate or reverse direction. If no physical evacuation 
of the channel occurs, that is, if Y(E,O) > -h,  then from (12) one immediately obtains 
the bound 

y(6,O) = I'(X(6,O)) for 7 = 0, EE~,, the fixed boundary, 

Ay = 0 for (E,~)EAS', 

y(5, --h) = 0, bottom boundary conditions. 

The asymptotic condition becomes 

( Y , a , Y , a , Y ) + O  as 5 + k a .  

a,y(5, 7) > - 1 for ail ~ 7 )  €8, (15) 

stating that streamlines never develop vertical tangents. 

attainable by a point on the free surface. Clearly 
We first note an upper bound on the height above the asymptotic fluid-level 

thus for any to E a,, the boundary conditions in (13) imply that 

If equality occurs in (16), (a,Y)2+(a, Y)2 is infinite, and the surface must possess a 
singularity, the crest of the Stokes wave of extremal form. This estimate is well- 
known in other settings (Staar 1947 ; Keady & Pritchard 1974) but is particularly 
simple to see in these variables. 
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2.1. Objects above mean level 
Examine the situation where the object in the top surface lies entirely above mean 
level, so that 

(see figure 1 ) .  This would be relevant, for example, in the case of a surfboard or some 
other planing object riding on the top surface of the fluid. We shall derive a bound 
for the highest crest and lowest trough if it occurs on the free surface, and in so doing, 
we will assume that the wave is propagating at  a supercritical speed, c2 2 gh. For 
subcritical speeds, there is some information about the amplitude of solutions 
through the comparison principle, however, it is less conclusive and it is not pursued 
in this paper. Suppose f i s t  that y(Eo,O) > 0 is the highest crest, being attained at a 
point Eo~i3,, on the free boundary. Compare this solution to the uniform flow given 
by the linear function I ( [ ,  q )  = [y(Eo, O)/h]  (q +A). Clearly I ( [ ,  0) 2 y(E,O), l(& -h) = 
y(E, - h )  = 0 and l ( 5 , ~ )  > y(E, q )  + 0 as c+ f. co. Use of the comparison principles in 
$ 1  implies first that l (E,  q )  > y([,r]) for all ( E ,  q )  ES, as well as a comparison of the 
normal derivatives of 1 and y at (Eo,  0) : 

Y ( E , O )  > 0 for 5 E a 2  (17) 

a,Y(E010) = 0. J 
Since 6, E a,, this strict inequality is used in the Bernoulli condition 

where y(t0, O)/h = m > 0 is used, This can be rewritten as 

m2+(2 - -32 )m+(1 -F2)  > 0 (19) 

for F2 = c2/gh, the square of the Froude number. In the supercritical regime one has 
F > 1, and the rightmost root of the quadratic (19), which we denote by m+(c), is 
positive, while the left most root, m-(c), is negative. Since m > 0, (19) implies that 
m > m+(c), and we obtain a lower bound on the maximum amplitude of a solution if 
it is attained on the free portion of the surface, a,. This result can also be expressed 
as F2 < 2(m+ 1)2 / (m+2) ,  which has appeared in Staar (1947) in the context of the 
solitary wave. 

In  this elevated setting (17), consider now the possibility that a lowest trough of 
a solution of (13) is attained somewhere on the free surface, and lies below the 
asymptotic level of the top fluid surface. That is, suppose there exists to E a, such that 
y(&,,,O) < 0 is the lowest trough. Again using the uniform flow 

a, 7) = [Y(EO, O)/hI (7 +h) ,  

one can apply the comparison principle to obtain: 

a,Y(EoJw = 0. 

Substitution into the Bernoulli condition then implies 
1 

(1 + a,y)2 + (a,y)2 ( 1  +m)' ' 
>- 2g 1 

1 0) = 
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FIQWRE 2. Singularity at a minimum (solid line). The dashed line is a smooth flow which is 
disallowed since the minimum occurs on the free surface. 

where now y(&,O)/h = m < 0.  Here we have used (15); and we conclude that the 
minimum value m satisfies the inequality 

which for m < 0 is equivalent to (19). We learn that m > m+(c). However, recall that 
for supercritical c ,  m+(c) 3 0.  This is a contradiction, the resolution of which 
precludes the occurrence of a trough with a minimum below mean level attained on 
the free surface for supercritical flows. In other words, for F 2 1, if the object lies 
above the asymptotic level of the fluid, then the entire top surface is elevated as well. 
In the absence of any object, we recover the fact that supercritical solitary waves are 
positive, established in Craig & Sternberg (1988). 

2.2. Objects below mean level 
Turning to the setting relevant to a ship hull, we consider the case where some 
portion of the object lies depressed below the asymptotic fluid level. Assume that the 
velocity is supercritical, and that the flow has no spray or splash. Thus there is no 
wake at infinity, and the fluid surface { y  = f ( x ) }  tends to horizontal as x+ f ao. 
Using the arguments of the preceding section, in the hypothetical situation in which 
the lowest point on the fluid surface is attained on the free boundary, (21)  leads to 
a contradiction. The resolution of this is that either the minimum point is attained 
on the solid object, or the flow has a singularity in the form of spray or splash. 
Refining the argument slightly one can show that if the free surface makes contact 
with the object with continuous tangent, then the minimum of the fluid surface 
cannot occur at these points of contact. 

Thus for smooth supercritical flows, any minimum attained by the fluid surface 
must occur only in the interior of the object, not on the free surface or a t  the 
endpoints of the object. This is a restriction on the geometries of the solid object 
which allow smooth free-surface flows at supercritical velocities. In particular, if the 
specified profile of the object { (z, f (2)) : a  < x < b} has a minimum point below mean 
level at either endpoint of the region in contact with the fluid, then the flow cannot 
have a continuous derivative. The remaining possibilities are that the flow has 
splash, spray or a boundary singularity at  the leading or trailing edge. Such 
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t > X  

Pa I 

FIQURE 3. Interfacial wave between two immiscible fluids. 

singularities in a real flow certainly have an effect on the hydrodynamical drag and 
the forces exerted on the solid object. In the case of a hull, geometrical considerations 
in its design could reduce or eliminate these singularities. (See figure 2). 

3. Waves in an interface between two immiscible fluids 
Similar comparison techniques also apply to the problem of waves in an interface 

between two horizontally infinite bodies of fluid, again under the influence of gravity. 
We consider two-dimensional steady flow, asymptotic to uniform flow as x + + _ o o ,  
with the same speed c for each fluid. Equivalently, this describes a wave propagating 
without change of form in this double layer of fluid which is taken a t  rest at  x + f 00. 

We choose to retain four physical parameters in this problem: the asymptotic 
depths of the fluid layers, h, and h,, as x + f co, and the fluid densities p, and p,. The 
density p, will refer to the upper fluid density, which will be taken less than p,. (See 
figure 3). 

Denoting the free interface by r(z) and the velocity potentials for the upper and 
lower fluid bodies by G1(x, y), @,(x, y), one poses the problem : 

i-$,@, = O  for y =  h,, 

q,@, = O  for y = - h 2 ,  

A @ ,  = 0, -m < z < +coo, f(x) < y < h,, (22) 
A @ ,  = 0, - a0 < x < + co, -h, < y < r(x), 

pl(#7@,)2++(x)-$2) = p2(3V@,)2++(x)-&2) for y = r(z), 

where the last formula is the Bernoulli condition maintaining continuity of pressure 
across the interface. As before, we consider solutions that approach uniform flow at 
infinity ; that is we impose the asymptotic conditions 

We wish to emphasize that again we assume that the interface can be described as 
the graph of a function, +(x), in order to be able to apply our comparison principles. 
There is numerical evidence to suggest that some interfacial solitary waves can 
develop vertical slopes or ‘overhang’ (e.g. Meiron & Saffman 1983; Grimshaw & 
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Pullin 1986; Turner & Vanden-Broeck 1988). However, in the present setting, we are 
unable to treat these waves with our techniques. As in the previous section (cf. (12)) 
this assumption on r first allows one to apply the comparison principles to conclude 

that streamlines do not develop vertical tangents, 

a, Y, > 0, j = 1,2, (24) 

throughout the two fluid regions. 
Our goal here is to apply the comparison arguments to obtain information on the 

interfacial wave ; in particular as to its elevation or depression, and its amplitude. To 
this end we find it most convenient to introduce coordinates analogous to the 
complex velocity potential transformation ; that is, one considers the equivalent 
problem of finding conformal mappings from fixed domains onto the regions 
occupied by the two fluids. Let (@,, Y,), j = 1,2, be the velocity potential and stream 
function for the two fluid regions, with Y,(x, r(z)) = Y,(x, r(x)) = 0 for nor- 
malization. Define two fixed domains 

S,={(6,7):-00 < E < + O O , O < T < h l } ,  

s, = {([,?#I): --oo < E < +0O,  -h, < ?j < O } ,  

and set (cE, q) = (@,, Y,) in S,, (cE, CT)  = (@,, Y,) in S,. The problem (22), (23) is 
equivalent to a system of differential equations for the conformal maps 2, = (X,  + i q )  
(6, r ] ) ,  j = 1,2, from the fixed domains S,,S, into the regions occupied by the two 
fluids. Writing 2, = (E+x,([ ,  r ] ) ,  r] +y,(E, r ] ) ) ,  one can restate the problem in terms of 
Y& 7) 

By, = 0 in S,, 

y,(& h,) = 0 for 

y2(& -h2) = 0 for 

- 00 < E < + 00, top boundary conditions, 

- 00 < 5 < + 00, bottom boundary conditions, 

Ay, = 0 in S,, l ( 2 5 )  

( Y , ( E , r ] ) , a 5 Y , ( E , r ) a , Y , ( E , r ] ) ) ~ O  as E++-oo. 

It is also necessary to match y,  across the interface. Hence, we define Z(E) through 

(26) 

which matches the vertical displacements of the interface. Finally, the Bernoulli 
condition on the interface becomes 

the relation X,(l(E), 0) = X,(& 0) so that 

Y l b 5  0) = r(xl(E90)) = W , ( l ( E ) ,  0)) = Y,(l(E), 01, 

This double complex velocity potential transformation is equivalent to the 

(28) 

4 ,y , (E9r ] )> -1 ,  j = L 2 .  (29) 

problem (22), (23). Furthermore, if neither fluid layer is breached, 

- h, < T(x) < h,, 

then for smooth flows we use (24) to derive the estimate from below: 

Using this formulation, we now obtain detailed information on the sign and 
amplitude of these interfacial waves in terms of the parameter values p,, p,, h, and 
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h,. The strongest results are obtained for supercritical velocities : c2 > c:, where the 
critical velocity is defined (e.g. Benjamin 1966) to be 

We note that it is only in this regime that the existence of interfacial solitary waves 
has been established (Amick & Turner 1986; Bona & Sachs 1989). The significance 
of the critical velocity comes from the fact that for c2 > ci, steady flows which 
approach uniform flow at infinity cannot support small-amplitude periodic ripples at 
infinity. Furthermore, the comparison principle employed below yields weaker 
information in the subcritical case, c < co. 

With an eye towards establishing a dichotomy, based on the physical parameter 
values, between waves of elevation and waves of depression which solve (22), (23) we 
suppose that y l (& 0) attains a non-negative maximum at the value E0. By translation, 
we may assume that E0 = 0 and Z(6,) = 0 so that 

M = max y,(E, 0) = yl(O, 0 )  = y2(0,  0 )  3 0 .  

Then a,y,(O, 0) = 0 for j = 1,2, and we may compare separately y1 and y2 to the 
corresponding uniform flows having the same asymptotic velocities. Use of the 
comparison principle of 8 1 yields 

5 

Yl(E97) < -M/h,(T-h,)  in 8 1 3  

Y 2 ( E ,  7) < M/h,(T + h2) in f l 2 .  

ally1 < -M/h19 a,y, > M/h2. 

Then (7) gives the inequalities 

Making the physical assumption M < h,, we may use these conditions, along with 
(29), in the Bournoulli condition (27) to obtain an inequality for M: 

This can be rephrased in the more convenient form 

a ( . )  < b(M,c)  for 0 < M ,  (32) 

where one defines P1 hi P2 hi a(s) = --____ 
(h l -s )2  ( h , + ~ ) ~ '  (33) 

and 

In an entirely analogous manner, if one assumes the presence of a non-positive 
minimum m for the interfacial wave, then a comparison to uniform flow yields the 
condition 

k c )  = (Pz-P,) (29/c2)(5-  1)- 

a(m) > b(m, c) for m < 0. (34) 

We can now draw numerous conclusions valid for the supercritical regime, c 3 co, 
under hypothesis (28), based on the following readily verified facts about the 
functions a and b :  

(i) a(0) = b(0 , c )  for all c;  
(ii) a'(s) > 0 for -hz < s < h,;  
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- h* 

FIQURE 4. Supercritical regime allowing only elevation waves. 

FIQURE 5. Upper bound c, on the fastest wave of elevation. The upper branch of the curve is the 
graph ofM+(e) and the lower branch is the graph ofM-(e). The region bounded by this curve and 
the vertical line e = co contains the set of possible points ( c , M ) ,  where e is wave speed and M is 
amplitude of an interfacial solitary wave of elevation. 

(iii) a'(0) > a,b(O, c )  for c > c,,, with a'(0) = a,b(O, c J ;  
(iv) a(s) has only one inflexion point in the interval -h,  < s < h,; 
(v) 1im8+a(s) = a, lim,,-,ta(s) = -m. 

3.1. Conclusions for interfacial waves 
(i) Elevation waves. Suppose that 

~ " ( 0 )  = 6 --A < 0. pn:) (35) 

Then the graph of a(s) lies below that of b(s, c) for all s < 0, precluding the possibility 
of a negative minimum m which would satisfy (34) (see figure 4). Thus r(z) > 0 and 
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the wave is one of elevation. From (32) we learn that the amplitude M of this 
elevation wave satisfies the bounds 

M-(c) < M < M+(c), (36) 

where MJc) and M+(c) are the two positive roots to the equation a($) = b(s, c). Since 

d/dcM+(c) < 0, (37) 

it follows that any supercritical wave of elevation has amplitude bounded from above 
byM+(c,). Furthermore, there is an upper bound c1 on the velocity of the fastest wave 
of elevation, given implicitly by the requirement that at the upper bound cl, the 
graphs of a(s) and b(s, cl) intersect tangentially at  a positive value of s (see figure 5). 
The bounds M,(c) and c1 are algebraic functions in the parameters (p1,p2, h,, h2), as 
one sees from (33). 

(ii) Depression waves. Suppose now that 

Pllh: - P 2 / G  > 0.  (38) 

Then the graph of a(s) lies above that of b(s,  c) for all s > 0, precluding the existence 
of a positive maximum satisfying (32). Hence r(x) < 0 and the solution must be a 
wave of depression. Applying (34) in this setting, we obtain bounds on the (negative) 
amplitude m of such a depression wave: 

mJc) < m < m+(c), 

where m-(c) and m+(c) are the two negative roots to the equation a(s) = b(s, c). Since 

d/dcm-(c) > 0, (39) 

it follows that any supercritical wave of depression falls no lower than m-(c,). As 
before, one also derives a bound, c2, for the fastest possible speed of a wave of 
depression. 

These two global conclusions extend the results of Benjamin from the small- 
amplitude regime to the case of solitary waves of any amplitude. 

(iii) The case of equality. In  the remaining case 

Pllh? = PdhL (40) 

we find that a(s) > b(s, c) for s > 0, while a(s) < b(s, c) for s < 0, precluding by (32) 
and (34) any deviation of the surface toward elevation or depression above the mean 
level. Thus the trivial solution r(z) = 0 is the only possibility. This completes the 
picture of permissible amplitudes and wave speeds for solitary waves in interfaces. 

In the light of (37) and (39), this analysis suggests that the presence of upper and 
lower boundaries forces the larger amplitude waves to slow down. In  the third case, 
(40), supercritical speeds are disallowed. Finally, we note that the clear distinction 
between waves of elevation and depression given by conditions (35) and (38) provides 
a crucial fist step in the proof of a priori symmetry of the interfacial waves profiles 
(Craig & Sternberg 1991). 
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